PERBANDINGAN ALGORITMA XGBOOST DAN RANDOM FOREST DENGAN TEKNIK FEATURE ENGINEERING PADA KLASIFIKASI

Authors

  • Ajeng Armalia Raidani STMIK Kaputama
  • Hotler Manurung STMIK Kaputama
  • Marto Sihombing STMIK Kaputama

Keywords:

Algoritma XGBoost, Random Forest, Feature Engineering, Klasifikasi Kelulusan

Abstract

Penelitian ini bertujuan membandingkan kinerja algoritma machine learning XGBoost dan Random Forest dengan teknik feature engineering untuk klasifikasi kelulusan siswa di SMK Putra Anda Binjai. Proses penentuan kelulusan secara manual sering memakan waktu, tenaga, dan rentan terhadap kesalahan, sehingga diperlukan solusi berbasis data yang efektif. Penelitian ini menggunakan data 500 siswa kelas XII tahun ajaran 2023/2024, yang meliputi nilai rata-rata rapor, nilai Ujian Kompetensi Keahlian (ASBK), dan persentase kehadiran. Setelah melalui tahapan preprocessing dan feature engineering, kedua model dilatih dan dievaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil evaluasi model manual menunjukkan akurasi 90% untuk kedua algoritma. Sementara itu, pada implementasi program, Random Forest mencatat performa sempurna dengan akurasi, presisi, recall, dan F1-score 100%, sedangkan XGBoost juga menunjukkan kinerja sangat baik dengan akurasi 99.8%. Hasil ini membuktikan kedua algoritma ini sangat efektif untuk klasifikasi kelulusan siswa.

Downloads

Download data is not yet available.

References

Aina, T. S., & Iyaomolere, B. A. (2025). Taiwo Samuel Aina and Babatunde Ademola Iyaomolere HYPERPARAMETER OPTIMIZATION OF RANDOM FOREST CLASSIFIERS FOR ENHANCED PERFORMANCE IN SENSOR-BASED HUMAN ACTIVITY RECOGNITION. https://aspjournals.org/ajset/index.php/ajset

Alsubhi, B., Alharbi, B., Aljojo, N., Banjar, A., Tashkandi, A., Alghoson, A., & Al-Tirawi, A. (2023). Effective Feature Prediction Models for Student Performance. Engineering, Technology and Applied Science Research, 13(5), 11937–11944. https://doi.org/10.48084/etasr.6345

Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.

Herni Yulianti, S. E., Oni Soesanto, & Yuana Sukmawaty. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792

Hussain, S., Sarwar, N., Ali, A., Khan, H., Din, I., Alqahtani, A. M., Shabir, M., & Ali, A. (2025). An Enhanced Random Forest (ERF)-based Machine Learning Framework for Resampling, Prediction, and Classification of Mobile Applications using Textual Features. Engineering, Technology and Applied Science Research, 15(1), 19776–19781. https://doi.org/10.48084/etasr.9148

Jan Melvin Ayu Soraya Dachi, & Pardomuan Sitompul. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470

Kumar, M., Singh, N., Wadhwa, J., Singh, P., Kumar, G., & Qtaishat, A. (2024). Utilizing Random Forest and XGBoost Data Mining Algorithms for Anticipating Students’ Academic Performance. International Journal of Modern Education and Computer Science, 16(2), 29–44. https://doi.org/10.5815/ijmecs.2024.02.03

Maftucha, N., Salma, S., Rahmayuna, N., & Wakhidah, N. (n.d.). Perbandingan Algoritma Machine Learning Dalam Memprediksi Kelulusan Siswa. 19(2).

Munir, H., Vogel, B., & Jacobsson, A. (2022). Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision. In Information (Switzerland) (Vol. 13, Issue 4). MDPI. https://doi.org/10.3390/info13040203

Nur, A., Pudjianto, M., & Hidayat, E. Y. (n.d.). Perbandingan Prediksi Depresi Mahasiswa dengan Linear Regression, Random Forest, dan Gradient Boosting. Pendrikan Kidul, Kec. Semarang Tengah, 207. https://doi.org/10.31598

Pelima, L. R., Sukmana, Y., & Rosmansyah, Y. (2024a). Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review. IEEE Access, 12, 23451–23465. https://doi.org/10.1109/ACCESS.2024.3361479

Pelima, L. R., Sukmana, Y., & Rosmansyah, Y. (2024b). Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review. IEEE Access, 12, 23451–23465. https://doi.org/10.1109/ACCESS.2024.3361479

Purnama, M. A., Ramadhani, J., Anugraha, Y. S., Efrizoni, L., & Rahmaddeni, R. (2024). Perbandingan Performa Algoritma Random Forest dan Gradient Boosting dalam Mengklasifikasi Churn Telco. Techno.Com, 23(3), 645–657. https://doi.org/10.62411/tc.v23i3.11278

Rabbani, N., Kim, G. Y. E., Suarez, C. J., & Chen, J. H. (2022). Applications of machine learning in routine laboratory medicine: Current state and future directions. In Clinical Biochemistry (Vol. 103, pp. 1–7). Elsevier Inc. https://doi.org/10.1016/j.clinbiochem.2022.02.011

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x

Sathyanarayanan, S. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research, 4023–4031. https://doi.org/10.53555/ajbr.v27i4s.4345

Syed Mustapha, S. M. F. D. (2023). Predictive Analysis of Students’ Learning Performance Using Data Mining Techniques: A Comparative Study of Feature Selection Methods. Applied System Innovation, 6(5). https://doi.org/10.3390/asi6050086

Downloads

Published

2025-09-21

How to Cite

Armalia Raidani, A., Manurung, H., & Sihombing, M. (2025). PERBANDINGAN ALGORITMA XGBOOST DAN RANDOM FOREST DENGAN TEKNIK FEATURE ENGINEERING PADA KLASIFIKASI. Global Research and Innovation Journal, 1(3). Retrieved from https://journaledutech.com/index.php/great/article/view/642

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.