PERBANDINGAN ALGORITMA XGBOOST DAN RANDOM FOREST DENGAN TEKNIK FEATURE ENGINEERING PADA KLASIFIKASI
Keywords:
Algoritma XGBoost, Random Forest, Feature Engineering, Klasifikasi KelulusanAbstract
Penelitian ini bertujuan membandingkan kinerja algoritma machine learning XGBoost dan Random Forest dengan teknik feature engineering untuk klasifikasi kelulusan siswa di SMK Putra Anda Binjai. Proses penentuan kelulusan secara manual sering memakan waktu, tenaga, dan rentan terhadap kesalahan, sehingga diperlukan solusi berbasis data yang efektif. Penelitian ini menggunakan data 500 siswa kelas XII tahun ajaran 2023/2024, yang meliputi nilai rata-rata rapor, nilai Ujian Kompetensi Keahlian (ASBK), dan persentase kehadiran. Setelah melalui tahapan preprocessing dan feature engineering, kedua model dilatih dan dievaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil evaluasi model manual menunjukkan akurasi 90% untuk kedua algoritma. Sementara itu, pada implementasi program, Random Forest mencatat performa sempurna dengan akurasi, presisi, recall, dan F1-score 100%, sedangkan XGBoost juga menunjukkan kinerja sangat baik dengan akurasi 99.8%. Hasil ini membuktikan kedua algoritma ini sangat efektif untuk klasifikasi kelulusan siswa.
Downloads
References
Aina, T. S., & Iyaomolere, B. A. (2025). Taiwo Samuel Aina and Babatunde Ademola Iyaomolere HYPERPARAMETER OPTIMIZATION OF RANDOM FOREST CLASSIFIERS FOR ENHANCED PERFORMANCE IN SENSOR-BASED HUMAN ACTIVITY RECOGNITION. https://aspjournals.org/ajset/index.php/ajset
Alsubhi, B., Alharbi, B., Aljojo, N., Banjar, A., Tashkandi, A., Alghoson, A., & Al-Tirawi, A. (2023). Effective Feature Prediction Models for Student Performance. Engineering, Technology and Applied Science Research, 13(5), 11937–11944. https://doi.org/10.48084/etasr.6345
Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
Herni Yulianti, S. E., Oni Soesanto, & Yuana Sukmawaty. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792
Hussain, S., Sarwar, N., Ali, A., Khan, H., Din, I., Alqahtani, A. M., Shabir, M., & Ali, A. (2025). An Enhanced Random Forest (ERF)-based Machine Learning Framework for Resampling, Prediction, and Classification of Mobile Applications using Textual Features. Engineering, Technology and Applied Science Research, 15(1), 19776–19781. https://doi.org/10.48084/etasr.9148
Jan Melvin Ayu Soraya Dachi, & Pardomuan Sitompul. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470
Kumar, M., Singh, N., Wadhwa, J., Singh, P., Kumar, G., & Qtaishat, A. (2024). Utilizing Random Forest and XGBoost Data Mining Algorithms for Anticipating Students’ Academic Performance. International Journal of Modern Education and Computer Science, 16(2), 29–44. https://doi.org/10.5815/ijmecs.2024.02.03
Maftucha, N., Salma, S., Rahmayuna, N., & Wakhidah, N. (n.d.). Perbandingan Algoritma Machine Learning Dalam Memprediksi Kelulusan Siswa. 19(2).
Munir, H., Vogel, B., & Jacobsson, A. (2022). Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision. In Information (Switzerland) (Vol. 13, Issue 4). MDPI. https://doi.org/10.3390/info13040203
Nur, A., Pudjianto, M., & Hidayat, E. Y. (n.d.). Perbandingan Prediksi Depresi Mahasiswa dengan Linear Regression, Random Forest, dan Gradient Boosting. Pendrikan Kidul, Kec. Semarang Tengah, 207. https://doi.org/10.31598
Pelima, L. R., Sukmana, Y., & Rosmansyah, Y. (2024a). Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review. IEEE Access, 12, 23451–23465. https://doi.org/10.1109/ACCESS.2024.3361479
Pelima, L. R., Sukmana, Y., & Rosmansyah, Y. (2024b). Predicting University Student Graduation Using Academic Performance and Machine Learning: A Systematic Literature Review. IEEE Access, 12, 23451–23465. https://doi.org/10.1109/ACCESS.2024.3361479
Purnama, M. A., Ramadhani, J., Anugraha, Y. S., Efrizoni, L., & Rahmaddeni, R. (2024). Perbandingan Performa Algoritma Random Forest dan Gradient Boosting dalam Mengklasifikasi Churn Telco. Techno.Com, 23(3), 645–657. https://doi.org/10.62411/tc.v23i3.11278
Rabbani, N., Kim, G. Y. E., Suarez, C. J., & Chen, J. H. (2022). Applications of machine learning in routine laboratory medicine: Current state and future directions. In Clinical Biochemistry (Vol. 103, pp. 1–7). Elsevier Inc. https://doi.org/10.1016/j.clinbiochem.2022.02.011
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Sathyanarayanan, S. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research, 4023–4031. https://doi.org/10.53555/ajbr.v27i4s.4345
Syed Mustapha, S. M. F. D. (2023). Predictive Analysis of Students’ Learning Performance Using Data Mining Techniques: A Comparative Study of Feature Selection Methods. Applied System Innovation, 6(5). https://doi.org/10.3390/asi6050086
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ajeng Armalia Raidani, Hotler Manurung, Marto Sihombing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.